If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3t^2-24t-15=0
a = 3; b = -24; c = -15;
Δ = b2-4ac
Δ = -242-4·3·(-15)
Δ = 756
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{756}=\sqrt{36*21}=\sqrt{36}*\sqrt{21}=6\sqrt{21}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-6\sqrt{21}}{2*3}=\frac{24-6\sqrt{21}}{6} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+6\sqrt{21}}{2*3}=\frac{24+6\sqrt{21}}{6} $
| 2x÷5-6=4 | | 2x+5-3(x-5)=11 | | 9x*25=1-3x | | 5t^2-22t-15=0 | | 2/3x-3x-1/2=x/5+4 | | 3(x-4)+5(x+3)=13 | | 9c-3=8c-8 | | F(x)=4x11 | | F(x)=4x1 | | 2t+30=20-7t | | 9x+25=1-3x | | 5x/3-21=-101 | | 67/10=x/12 | | (x+15)²-10=0 | | 4y+5/2y-3=9/13 | | 10x+x^2-4=99 | | (4x-3)^2(4x-3)^2=26 | | (4x-3)^2(4x3)^2=26 | | 5m+7=10 | | 7^(2x)=11 | | 44=a+(4–1)6 | | 8x+8x+8x=30 | | X=7x+20÷5 | | 0.86=2E-06x+0.0564 | | 4x=5(2x-14)-2 | | 5x+9=-2x-12 | | -1/2(x-6)-1/2(x-2)=x+6 | | 2-7d=—75 | | 5x=4(60+x) | | 10y-10=0 | | (2(7)+4)=(7y-3) | | 4(3y)+20=5y+7 |